

Mapping of field-aligned currents in the ionosphere and bursty bulk flows in the magnetotail

V. Lanabere ¹, A. P. Dimmock ¹, S. Buchert ¹, Y. Khotyaintsev ¹, O. Marghitu ² and collaborators

¹ Swedish Institute of Space Physics, Uppsala, Sweden - ² Institute of Space Science, Bucharest, Romania

T96

Introduction and objective

Substorm are usually associated with large ground geomagnetic disturbances at high magnetic latitudes and at the night as a consequence of changes in the ionospheric currents. During a substorm part of the energy in the magnetotail is transported towards the near-Earth by transient high-speed plasma flows, known as **Bursty Bulk Flows (BBFs)** that are coupled with the ionosphere via **Field-Aligned Currents (FACs)**. The **F-BURST** project aims to study MI coupling using multi-spacecraft observations

L. Richard, 2023. Adapted from Sergeev et al., 2000 and Duan et al., 2016.

We plan to combine long-term ionospheric and magnetospheric data such as Swarm, Cluster, and MMS observations

- Database of 2394 BBF in the magnetotail from MMS data performed by L.
 Richard et al (2022) https://zenodo.org/records/7528071
- We use Tsyganenko models to find the BBFs' footprint into the ionosphere
- Swarm is used to study the behaviour of FAC during BBFs

BBF Statistics

The BBF were detected during the magnetotail season of MMS (Jun-Sep)

- BBFs have a orbital coverage bias
 - Gaussian distribution centered at Z_{GSM} = 5.80 R_E and Y_{GSM} = 2.55 R_E
- Positive mean dipole tilt angle 18.1°
 The mean duration of the BBF is 3.49
- The mean duration of the BBF is 3.49 minutes
- 89% of the events are Earthward directed
- ~75% of BBF occurs during calm geomagnetic conditions (kp < 3 and -25 nT < Sym-h < 5 nT)

To reduce the orbital bias we plan to extend our database with BBFs detected by THEMIS and Cluster

BBF mapping with Tsyganenko models

We use the Tsyganenko models (T89, T96, T04) to find the footprint of the BBF

• T01 is not included because 66% of the BBFs are located X_{GSM} > -15 Re

 The differences between the models depends on the position, the solar wind conditions, and tilt angle

 We will study the differences in the footprints for each model under different conditions

BBF footprint

Histogram of the BBFs footprint for all Tsyganenko models shows similar characteristics:

- Footprints are mainly clustered between
 - MLT 21-03
 - AACGM latitude 65-75°
- Maximum at pre-midnight

The footprint at pre-midnight is directly related with the BBF position at $Y_{GSM} > 0$

SWARM Field-aligned currents

We use Swarm FAC from single spacecraft at the moment of the BBF observation plus 15 minutes.

- The signed mean value shows the usual pattern of R1 and R2 currents.
- Due to the orbital bias in summer season we observe:
 - Mean absolute value larger in north hemisphere than in the south hemisphere
 - Larger magnitudes in the midday sector due to higher conductivity of the ionosphere in the illuminated side.

• The seasonal and diurnal effect should be taken into account. We will focus in the region defined by the footprint

Future plans

- Include a set of BBF detected by Cluster and/or THEMIS
- Estimate the difference in the footprint location from different Tsyganenko models
- Use SwarmFACE package https://zenodo.org/records/7361439 to study the behaviour of FAC during BBFs

References:

Richard, L., et al. (2022). Are dipolarization fronts a typical feature of magnetotail plasma jets fronts? *GRL*, doi: 10.1029/2022GL101693

Blagau A and Vogt J (2023) SwarmFACE: A Python package for field-aligned currents exploration with Swarm. Front. Astron. Space Sci.. doi: 10.3389/fspas.2022.1077845

