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Abstract

Spherical electrostatic probes are in wide use for the measurement of electric fields and
plasma density. This report concentrates on the measurement of fluctuations of these quantities
rather than background values. Potential problems with the technique include the influence of
density fluctuations on electric field measurements and vice versa, effects of varying satellite
potential, and non-linear rectification in the probe and satellite sheaths. To study the actual
importance of these and other possible effects, we simulate the response of the probe-satellite
system to various wave phenomena in the plasma by applying approximate analytical as well as
numerical methods. We use a set of non-linear probe equations, based on probe characteristics
experimentally obtained in space, and therefore essentially independent of any specific probe
theory. This approach is very useful since the probe theory for magnetized plasmas is incomplete.
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1 Introduction

The literature on the theory of probe measurements is extensive, starting with the work of Langmuir
in the 1920s (e.g., Mott-Smith and Langmuir, 1926). Recently, there has been some emphasis on the
problems occurring in these types of measurements in space plasmas. In particular, the influence
of density fluctuations on measurements of electric fields has been theoretically studied by Diebold
et al. (1994) and Laakso et al. (1995), and the effects of rectification of wave signals by nonlinearities
in the probe sheaths has been discussed by Boehm et al. (1994) with applications to observations
from sounding rockets. Here, we will study these and other spurious components in the signals
from the probes, emphasizing the use of multiple probe measurements for their identification. We
concentrate on the measurements of fluctuations of the electric field and plasma density rather than
their background quasi-static values. This approach enables us to use a semi-empirical approach
essentially independent of the details of the incompletely known probe theory.

The discussion is illustrated by measurements from the Viking (Hultqvist, 1990) and Freja
(Lundin et al., 1994) satellites. Both these spacecraft were equipped with a set of spherical probes
on wire booms in the spin plane (Table 1). We use data from the instruments V4L on Viking and F4
on Freja (Holback et al., 1994), both measuring several electric wave field and/or density fluctuation
signals using the spherical probes. The same sets of probes are also used by the instruments V1
on Viking and F1 on Freja, and additional properties of the probes can be found in descriptions of
these instruments (Block et al., 1987; Marklund et al., 1994).

When a probe is used for the measurement of plasma density fluctuations, it is biased to a
positive potential VP with respect to the plasma. Electrons are then attracted and collected by the
probe, and under certain conditions (Section 2.1), the collected current IP will be proportional to
the number density of electrons. Ideally, IP should be insensitive to variations of VP for this type
of measurement, to ensure that fluctuations in the probe current due to variations in the probe
potentials are not mistakenly interpreted as density variations. This means that the differential
resistance R = (dIP /dVP )

−1 should be as high as possible. The function IP (VP ) is known as the
probe characteristic, its graph being the probe curve. Figure 1 shows examples of probe curves
from Viking and Freja, recorded by sweeping the bias potential of a probe (with respect to the
satellite) and measuring the current flowing from the satellite body through the probe and out to
the plasma. Often, plasma characteristics such as temperature and density are derived from probe
sweeps of this type with the aid of some probe theory. This is not the aim of the present study,
where we concentrate on studies of fluctuations, as opposed to background parameter values. Our
principal use of the experimentally determined probe curve is as a tool for diagnosing measurements
of electric field and density fluctuations.

When measuring electric fields (Fahleson, 1967; Mozer, 1973), two probes are fed with the same
bias current IB, and the voltage between them is measured. If the plasma conditions at the two
probes are identical, they follow identical probe curves, and as they are fed with the same IB, they
have the same VP . Any voltage between the probes therefore is due to electric fields in the plasma.
To minimize the error in this technique, IB should be chosen so as to place the probe at a point on
the probe curve where the current-voltage relation depends as little as possible on the conditions
in the plasma. If this was perfectly satisfied, the probe would always stay on the same potential
with respect to the plasma, and thus the voltage between any two probes would precisely give the
voltage variation due to electric fields in the plasma. One should note that even though the voltage
measurement would be accurate, the electric field estimate could still be erroneous due to finite
wavelength effects.
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Figure 1: Examples of Langmuir sweeps. Normally used bias values are found in Table 1. The
voltage axis has been rescaled by VP = VS + VB, where VS is given below. Dots are measured
values, solid lines are parametrizations as in Section 2.3 with the following values: Viking (left):
Iph,0 = 530 nA, Tph = 1 eV, αn = 18 cm−3, T ∗ = 1 eV, βn = 0, VS = 3 V. Freja (right): Iph,0 = 50
nA, Tph = 1 eV, αn = 350 cm−3, T ∗ = 0.4 eV, βn = 1000 cm−3, m∗ = 4 u, VS = −1.3 V.

Viking Freja

Total number of spherical probes: 4 6
Number of voltage probes: 2 - 4 2 - 6
Number of density probes: 0 - 2 0 - 4 (P3 - P6)
Probe radius: 5 cm 3 cm
Boom length: 40 m 10.6 m (P1 - P4)

5.6 m (P5, P6)
Most used bias voltage: 16 V 10 V
Most used bias current: -150 nA 22 nA
Satellite spin rate: 3 rpm 10 rpm
Typical satellite speed: 3 km/s 7 km/s
Typical measurement altitude: 5,000 - 13,000 km 1700 km
Typical magnetic field: 2 - 9 µT 25 µT
Typical plasma density: 1 - 1,000 cm−3 100 - 5,000 cm−3

Typical electron temperature: 0.5 - 2 eV 0.2 - 0.4 eV
rP /λD: 0.005 - 0.3 0.05 - 1
rP /rge: 0.05 - 0.1 0.3 - 1
λD/rge ∼ fce/fpe: 1 - 10 2 - 10

Table 1: Instrument and plasma parameters for Viking and Freja. Electron temperatures for Viking
are derived by fitting of probe curve from OML theory for an unmagnetized plasma to measured
probe sweeps. For Freja, a model electron temperature is used (Brace and Theis, 1981).
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2 Probe theory

2.1 Particle collection by spherical probes: Orbital motion limited or sheath
limited

In a sufficiently thin plasma, the screening of the potential field from the probe is weak. The
motion of any single charge is then essentially independent of the motion of other charges, and we
say that the collection of particles by a probe is orbital motion limited (OML). If the plasma is
dense, the field around a probe is significantly influenced by space charge effects and the Debye
screening effect of the charged particles around it. The properties of the sheath will change with
the collected current, and the theoretical description of probe operations in such circumstances
is rather involved. This is the sheath limited (SL) regime of particle collection. The transition
between the two cases is given by a comparison of the characteristic dimension of the applied field,
which is the probe radius rp, and the intrinsic screening distance in the plasma, which is the Debye
length λD. The condition of validity of OML theory thus is

rP ≪ λD. (1)

Since the particle motions do not affect the potential in the OML case, it follows that the
current carried by plasma particles hitting the probe is proportional to the plasma density. In
sunlight, there will also be a current due to the emission of photoelectrons from the probe. Thus,
the current to the plasma from a probe at potential VP with respect to the plasma is

IP = nF (VP , T, ...) + Iph(VP , ...), (2)

where n and T are the number density and the temperature of the collected particle species and
the dots indicate other possibly important parameters, the most important of which we expect to
be the magnetic field in the plasma and the spacecraft speed, and F is some as yet unspecified
function. In this report, we use the convention that currents are positive when flowing from the
probe or the spacecraft to the plasma. The photoelectron current can be expected to be of the
form

Iph(VP ) =


−Iph,0 exp(−VP /Tph) , VP > 0

−Iph,0, VP < 0 ,
(3)

where solar irradiation and probe surface properties determines the constants Iph,0 and Tph, and
a Boltzmann distribution is assumed1. As discussed by Pedersen (1995), it is sometimes a better
approximation to describe the photoelectrons as a superposition of two Boltzmann distributions
with different temperatures. However, for our purposes, equation (3) is sufficient for describing the
observed probe characteristics.

Comparing to the sweeps in Figure 1, it is clear that the importance of Iph is much larger in
the thin plasma encountered by Viking than in the denser plasma on Freja altitudes. Typically,
Tph is a few eV, so for the normally used bias voltages of 10 – 20 volts, the contribution from
the photoelectron current is usually negligible. In particular, it can be neglected at the operation
points of the density probes (Figure 1), where the probe current then is linear in density (2).

1We will here use the convenient convention of refering to Tph, which according to (6) has the dimension of
potential, as a temperature in eV. Other temperatures will be treated in a similar fashion, implicitly assuming
normalization to Boltzmann’s constant and the elementary charge.
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Figure 2: Freja F4 data showing probe current dependence on plasma density. Top: Probe current
from probe 5. Center: Spectrogram of high frequency waves. The electron cyclotron frequency fce
is around 800 kHz. Bottom: Superposition of (a) and (b) with suitable logarithmic axis scaling.

Finding the function F in the case of magnetized plasmas is a complicated task, still subject
to research in the field of probe theory (Laframboise and Sonmor, 1993). However, regardless of
F , equation (2) implies that if we can neglect the photoelectron current, the response δIP of the
probe current to fluctuations in the plasma density δn is

δIP
IP0

=
δn

n0
(4)

if all other parameters are constant. This fundamental result is independent of F , and is valid in
all situations where OML theory applies, also in magnetized plasmas.

2.2 Validity of OML theory

Table 1 shows some typical values of rp/λD encountered by Viking and Freja, which may be
compared to the criterion of validity for OML theory (1). The conclusion is that the OML approx-
imation normally is applicable, although it may fail in particularly dense plasmas encountered by
Freja.
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The conclusion that OML applies is supported by experimental verification of an IP ∝ n
relation. The upper plot in Figure 2 shows the probe current to probe 5 during part of a Freja
orbit, and spectrogram of high frequency waves detected during the same time interval are seen
in the center panel. Two interesting features in this spectrogram are narrow band emissions, seen
during most of the time interval shown (near 200 kHz at UT 023200, for instance), and an upper
cutoff, for example near 450 kHz at 023040. Natural interpretations of these features in the spectra
are in terms of Langmuir waves near the plasma frequency fp, and the upper cutoff of the whistler
mode, respectively (see, for instance, Figure 2 of André (1985)). As fp ∝

√
n, it should be possible

to have the probe current follow the plasma frequency emissions if we choose scales so as to have
a variation by a factor N in current correspond to a factor

√
N in frequency, if the probe current

is linear in the density. The bottom plot shows that this is approximately the case. An extended
study of how the probe current depends on plasma density, as determined from plasma frequency
emissions, has been made by Carlson (1994), who found that the linear relation between I and
n suggested by Figure 2 is approximately valid for densities varying over almost two orders of
magnitude.

Experimental support for the approximate applicability of the OML approximation is also found
in the high degree of linear dependence of the probe current on the voltage found for probe potentials
well above zero in the experimentally obtained probe characteristics (Figure 1). In a plasma with
strong shielding effects, the probe current would rather be expected to follow the Child-Langmuir
3/2 power law (Chen, 1965).

Thus, the deviation of the actually valid probe theory from OML theory cannot be very large.
To estimate the errors made by using equation (4), we use numerical results for an unmagnetized
plasma by Laframboise (1966), assuming that the addition of a magnetic field does not fundamen-
tally change the shielding properties. In his tables 5c and 5f, Laframboise tabulates the probe
current as a function of rP /λD for various values of VP /Te assuming Ti = Te and Ti = 0, respec-
tively. By the use of cubic spline interpolation on these results, we have calculated the effects of
finite λD on the validity of (4) for realistic Freja parameters. It can be seen in Figure 3 that the
error in the δn/n0 estimate is linear in the amplitude for fluctuations up to tens of per cent, and is
very small even for density as high as 5,000 cm−3. We conclude that the error introduced into (4)
by finite Debye length effects is small in the cases of Viking and Freja, so that the OML relations
(2) and (4) hold to good accuracy for these spacecraft.

2.3 Parametrization of probe sweeps

The function nF in (2) is experimentally available from probe bias sweeps. It is often sufficient to
describe the essentials of the probe performance by the local properties of the probe curve near the
point of operation of a probe. This approach is used in Section 3. However, for making detailed
numerical calculations and simulations of the complete probe-spacecraft-plasma system, as we will
do in Sections 4.2 and 5.3, it is sometimes useful to parametrize this function. We do this by fitting
measured sweeps to an expression

IP (VP ) = Ie(VP ) + Ii(VP ) + Iph(VP ) (5)

where Iph is given by (3), and the other terms describe collection of plasma electrons and ions,
respectively. For Ie, we use

Ie(VP ) =


Ie0 (1 + VP /T

∗) , VP > 0

Ie0 exp(VP /T
∗), VP < 0,

(6)
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Figure 3: The error, due to finite rP /λD, made when assuming δn/n = δi/i. Te = 0.4 eV, rP = 3
cm, and VP = 10 V has been assumed. Based on numerical results by Laframboise (1966).
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where

Ie0 = 4πr2P eαn

√
eT ∗

2πme
(7)

and αn and T ∗ are parameters of the fit. The form of (6) is inspired by the OML theory for an
unmagnetized plasma (Mott-Smith and Langmuir, 1926), where this result holds with α = 1 and
T ∗ = KTe/e. The conditions of validity for this theory are the OML condition (1) and the two
conditions of negligible magnetic field effects,

rP /rge ≪ 1 (8)

and (Rubinstein and Laframboise, 1982)

λD/rge ∼ fce/fpe ≪ 1, (9)

where rge is the thermal electron gyroradius, and fce and fpe are the electron cyclotron and plasma
frequencies, respectively. Comparing to Table 1, condition (9) is almost always violated on both
Viking and Freja, while the other relations generally are satisfied. For Freja, the insufficiency of
unmagnetized OML theory has been experimentally demonstrated by Carlson (1994) However, in
Section 2.1 we concluded that the current of collected electrons is approximately linear in density,
so the dimensionless factor α in (6) takes care of effects of magnetization and small deviations
from OML conditions on the density dependence of Ie. For the temperature, a ”rounding of the
knee” effect (Laframboise and Rubinstein, 1976; Rubinstein and Laframboise, 1982) may cause T ∗

to be lower than Te. On the other hand, electron temperature estimates from Langmuir probes are
sometimes found to be higher than values derived by other methods (Carlson and Sayers, 1970;
Benson et al., 1977). These problems are of little concern to us here. Our interest is to get a
parametrization of the probe sweeps, and we leave the interpretation of T ∗ open.

For the current of collected ions, we use a similar modification of known results for an unmag-
netized plasma. The ion current will be seen to be negligible in the case of the applications to
Viking data. Freja moves at a speed vsat ≈ 7 km/s, so if the plasma drift can be neglected, the
ram energy 1

2miv
2
sat, where mi is the ion mass, is 0.25 eV for H+ ions and 4 eV for O+. Normally,

the ion temperature Ti can be expected to be below the ram energy, particularly for oxygen, which
is usually the dominating ion species. The ion current is then described by (Fahleson et al., 1974)

Ii(VP ) =


πr2Pβnevsat

(
1− 2eVP

m∗v2sat

)
, VP <

m∗v2sat
2e

0, VP ≥ m∗v2sat
2e

. (10)

If the plasma is unmagnetized, β = 1 and m∗ is the effective ion mass, m∗ = meff ≡ n/
∑

i ni/mi

where the sum runs over ion species. As the gyroradius is much larger for ions than for electrons
with corresponding energies, magnetic field effects are expected to be less important for the ions
than for the electrons, so β ≈ 1 and m∗ ≈ meff may very well hold in the cases to be studied
here. In case the ion temperature is higher than the ram energy, the ion current will have a form
similar to the electron current in (6), and its functional dependence on VP and n will therefore be
the same for negative probe potentials, which is the only region where Ii is an important part of
the total probe current. Hence, it should be possible to fit observed probe sweeps to (10) under
quite general circumstances, even though the value of β and m∗ may be very different from 1 and
meff . Again, this is of no concern to us, since our goal is to find an empirical parametrization of
the probe curve, not to establish its actual dependence on physical parameters.
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In Figure 1, we find examples of fits of the parameters αn, T ∗, βn, and m∗ to observed current-
voltage characteristics. For the shown Viking sweep, it is evident that the photoelectron current
(3) dominates over the ion current (10), which hence has been put to zero.
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3 Probe response to fluctuations in density and electric field

3.1 Resistive coupling

Assuming all other parameters to be constant, the probe current response to arbitrarily large
density fluctuations δn and small potential perturbations δVP is found from equation (2) to be

δIP
IP0

=
δn

n0
+

1

IP0

([
n

∂F

∂VP
+

∂Iph
∂VP

]
δVP +

1

2

[
n
∂2F

∂V 2
P

+
∂2Iph
∂V 2

P

]
(δVP )

2 + ...

)
=

=
δn

n0
+

δVP

RIP0
+ a2 (δVP )

2 + ... (11)

From experimentally obtained probe characteristics, we may calculate the probe sheath resistance,

R =

(
∂IP
∂VP

)−1

, (12)

as well as a measure of the local nonlinearity of the probe curve near the operation point of the
probe,

a2 =
1

2IP

∂2IP
∂V 2

P

. (13)

As is seen in Figure 1, IP is almost linear in VP for several volts around the point of operation of
the density probes, and a2 and higher nonlinearities may often be neglected. For voltage probes, a2
may be larger, and the validity of the expansion (11) is more restricted. Effects of the nonlinearity
will be treated in Section 5.

The neglect of fluctuations of other parameters than density and electric field normally is
a constraint only on temperature fluctuations. Magnetic wave fields are in all applications to
the ionosphere and inner magnetosphere much smaller than the ambient geomagnetic field, and
their effect can safely be neglected. Changes in the distribution functions of the collected particle
species can take place on short spatial scales. The density and temperature, being the first and third
moments of the distribution function, take care of the most important of these. The second moment,
the drift velocity, is generally not very important to the probe current, unless the fluctuations are
very large. Therefore, the most serious constraint on the equations above is that the fluctuations
should be isothermal. The ion current to the biased probes is usually negligible, in particular for
density probes, so the restriction to isothermal conditions is mainly on the electrons. For many
wave phenomena, it is reasonable to assume δT/T ≪ δn/n0, although wave structures with trapped
electrons may violate this assumption. For spatial structures, δT/T may be large. The effect of
fluctuating electron temperature may be estimated by use of OML theory for an unmagnetized
plasma. From equation (6) with T ∗ = Te, it follows that the probe current response is

δIP
IP0

=
1

2

1− VP /Te

1 + VP /Te

δTe

Te
. (14)

For density probes, we usually have VP ≫ Te, and then get δIP /IP0 ∼ (1/2)δTe/Te. For the voltage
probes on Viking, VP is a few volts positive. Therefore, VP will often be close to the ideal value Te

which removes the sensitivity to temperature fluctuations. For the voltage probes on Freja, the 22
nA bias current places VP close to zero, and the coefficient in front of δTe/Te in (14) is therefore
sensitive to variations in VP .
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3.2 Capacitive coupling

The resistive coupling between probe and plasma, described by (11) dominates for low frequency
perturbations. For higher frequencies, a capacitive term must be added to the probe current. If
CP is the capacitance of the probe to the plasma, we have

IP = nF (VP , T, ...) + Iph(VP , ...) + CP
dVP

dt
. (15)

Equation (11) is then generalized to

δIP
IP0

=
δn

n0
+

(
1

RIP0
+

CP

IP0

d

dt

)
δVP + a2 (δVP )

2 + .... (16)

Finding a theoretical estimate of the probe capacitance is a non-trivial problem. For the limit
of small probe potential, VP ≪ T , the potential around the probe is in the unmagnetized case
described by the Debye shielding law, which with boundary conditions relevant for a sphere of
radius rP reads

V (r) =
Q

4πϵ0

λD

λD + rP

e(rP−r)/λD

r
, (17)

where Q is the charge on the probe. In that case, the capacitance of the probe to infinity is

CD ≡ Q

V (rP )
≡ Q

VP
= 4πϵ0rP

(
1 +

rP
λD

)
= C0

(
1 +

rP
λD

)
, (18)

where C0 is the capacitance in vacuum. One may note that this coincides with the expression for
the capacitance of the probe to an outer concentric sphere of radius rP + λD.

In practice, density probes are usually biased to values VP ≫ Te, violating the assumption
behind the Debye law. However, the result (18) is still of interest as it shows that for λD ≲ rP ,
the probe capacitance can depend strongly on the local plasma properties. For sunlit probes, the
situation is complicated by the presence of a photoelectron sheath around the probes. The current
through the sheath may also change the potential distribution around the probe, which affects
the capacitance. We also know that the dielectric properties of a plasma vary with frequency and
wavelength of the perturbation, as described by the dielectric function (dielectric tensor) of the
plasma, and the capacitance may thus vary with frequency. However, in simulations by Calder and
Laframboise (1985) for a sphere of radius rP = λD in an unmagnetized plasma, such effects were
apparent only above about half the plasma frequency. Finally, magnetization effects may have a
significant impact on the shielding properties of a current carrying plasma, and thereby on the
capacitance. It is not possible to explore these issues in this study, where we will assume that the
displacement current CP dVP /dt is well described by a constant capacitance CP . This assumption
will be seen to work well in the applications to Viking and Freja observations below, although we
will have reason to discuss it again in section 5.3.3.

For Freja, we may use experimental results by Lindqvist et al. (1994), who investigated the
relaxation of the probe potential after steplike variations in bias current. They found that the
capacitance of a probe at VP ≈ 8 V was CP ≈ 14 pF. As C0 = 3.3 pF for the Freja probes, this is
far above what is predicted by (18), indicating the importance of one or several of the effects listed
above.
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Figure 4: Simple circuit description of instrument response to AC signals when in voltage mode.

3.3 Influence from instrument electronics

The probe current passes the instrument electronics, the input impedance of which therefore must
be considered. In current mode (density measurements), the input resistance of the electronics
is a few tens of ohms, and the input capacitance ∼ 10 pF, yielding an RC time constant on the
nanosecond scale. The capacitance can therefore always be neglected. Since the resistance of
the probe sheath is above 1 MΩ, we can safely neglect the input resistance as well. In voltage
mode (electric field measurements), the input resistance is of the 100 GΩ order, while the input
capacitance CE is 15 pF for Viking, 2.5 pF for Freja probes 1 and 2, and 6 pF for the remaining
Freja probes 3 to 6. Hence, the RC time of the electronics is on the tenths of seconds scale, so for
all wave measurements, effects of the input resistance are negligible. However, CE is of the same
order of magnitude as CP (Section 3.2) and cannot be neglected.

In the simplest assumption, where the spacecraft body is seen as a ground for time-varying
electric signals, the probe sheath and the electronics in the probe constitute a circuit. For small
amplitude perturbations, we may linearize and represent the circuit as in Figure 4 (more complete
and nonlinear circuit models will be introduced in Section 4.1). In this model, the measured probe
voltage δU is coupled to the applied voltage variation in the plasma δΦ by[

(CE + CP )
d

dt
+

1

R

]
δU =

[
CP

d

dt
+

1

R

]
δΦ (19)

with solution

δU = e−t/R(CP+CE)

∫ t

et/R(CP+CE)

(
1

1 + CE/CP

d

dt
+

1

R(CP + CE)

)
δΦ dt. (20)

For frequencies f ≪ fC = 1
2πR(CE+CP ) the resistive terms dominate, and δU = δΦ. For frequencies

f ≫ fC the capacitive terms are dominating, and we have δU = CP (CE + CP )
−1 δΦ.

3.4 Application: Freja observations of high amplitude waves in the lower hybrid
frequency range

André et al. (1994) and Eliasson et al. (1994) studied an event with high amplitude waves in the
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Figure 5: Time series of electric field (bottom) and probe current fluctuations to probe 5 (top) and
6 (center) recorded by the F4 instrument on Freja on December 5, 1992, Freja orbit 790. Time axis
starts at UT 023519.9.
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Figure 6: Spectral analysis of the data partly shown in Figure 5. The different plots are discussed
in Section 3.4.

lower hybrid frequency range coincident with strong transverse ion energization. Part of the time
series of these signals is shown in Figure 5. The strong high-frequency fluctuations in the probe
currents as well as their resemblance to the electric field signals suggests that the δIP /IP0 signals
are dominated by effects of probe voltage variations rather than by density fluctuations. This is
consistent with the cross spectral analysis of the two probe current fluctuation signals seen in the
two right panels of Figure 6 (for discussions of the application of cross spectral techniques to probe
measurements in space we refer to reports by LaBelle and Kintner (1989); Holmgren and Kintner
(1990); Vago et al. (1992)). The bottom panel shows the coherency between the two signals. High
coherency is found mainly above about 500 Hz. However, for a coherent density fluctuation, the
relative phase ϕ between the probe signals should vary with frequency f so that 2π df/dϕ times
the probe separation is the Doppler shifted (by the spacecraft motion) phase velocity of the density
perturbation in the direction of the probe separation. The relative phase is shown in the upper
right plot, and it is seen that the two probe current signals are approximately 180 degrees out of
phase in the region of high coherency. As the two probes are mounted on opposite sides of the
satellite, a long-wavelength external electric field will increase the potential of probe 5 when it
decreases the potential of probe 6. According to (16), the observed 180◦ phase shift is therefore
qualitatively explained by the influence of the wave electric field on the probe currents. We now
turn to a quantitative analysis.

Figure 7 shows the configuration of the Freja antennas at UT 023520, viewed along the geo-
magnetic field B0. A nearby probe sweep (not shown) yields R = 55 MΩ and IP0 ≈ 205 nA at
VB = 16 V. The transition between resistive and capacitive coupling therefore is at fC = 1.3 kHz.
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Figure 7: The probe configuration of Freja at UT 023520, December 5, 1992, as viewed along
the geomagnetic field. The spacecraft velocity is in the direction marked V, while S denotes the
direction to the sun.

Comparing to the spectrum in the upper left plot of Figure 6, we have to include resistive as well
as capacitive coupling by using (19) on the measured voltage to get the real potential variations in
the plasma. Assuming that the wave electric field is predominantly in the direction perpendicular
to B0, we may calculate the voltage variations on probes 5 and 6 due to the observed electric
field. In this case, only one electric field component, E12, is measured, so it is not possible to
exactly construct the relevant potential variations. However, for these broad-band waves, it is not
unreasonable to assume that the power of the electric wave field is approximately the same in all
directions when averaged over many wave periods. Hence, it should be possible to construct an
almost correct spectrum of the real voltage fluctuations of probes 5 and 6. This would lead to
erroneous results only if the electric field is almost linearly polarized and close to the direction of
one of the antennas on all frequencies, which is very unlikely for these high-amplitude waves. One
may note that the observed amplitudes of E ≈ 100 mV/m (Figure 5) and plasma frequency 100
kHz (Figure 2) implies a value of the turbulence parameter as high as W = 1

4ϵ0E
2/nKT ∼ 10−3

for the reasonable assumption T = 1 eV. This indicates that nonlinear interactions are important
for the dynamics of the waves, making the situation of linear frequency-independent polarization
unlikely.

If the signal in E12 is due to a perpendicular field, this perpendicular field is E12/ sin θ12, where
θ12 is the angle between the antenna and the magnetic field. We should also correct this field for
the effects of capacitive coupling by using (19). According to what we said above, we approximate
the projection of the perpendicular wave field in the direction of the booms on which probes 5 and
6 are mounted by E56 = E12 sin θ56 / sin θ12. The potential variations on probes 5 and 6 due to this
field are found by multiplying by the boom length for these probes, which is 5.5 m. This gives us an
estimate of the signal δVP in (16). As we obtained R and IP0 from the probe sweep, all parameters
in (16) and (19) are known, and we can calculate the expected probe current variations. As we
expect the calculated voltage on the probes to be correct only in a statistical sense, we compare
spectra rather than the signals themselves. The solid line in the upper left panel of Figure 6 is the
spectrum of measured probe current fluctuations, and the dashed curve is the values predicted from
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Figure 8: Electrostatic ion cyclotron waves observed by Viking, as discussed in Section 3.5.

(16). The agreement is very good in all the region where the relative phase of the two probe current
fluctuations is 180◦. To better illustrate this, the ratio of the amplitude spectrum (square root of
PSD) of the current fluctuation calculated from the electric field and the corresponding quantity
for the measured current is plotted as a solid line in the lower left panel. It is seen that above
some 500 Hz, the ratio is close to 1. We thus not only have a qualitative but also a quantitative
understanding of the effects of electric fields on the probe current.

This can also be seen as a support for the capacitance value derived by Lindqvist et al. (1994).
The dashed curve in the lower left panel of Figure 6 shows the result of using the vacuum value
of the probe capacitance to infinity, 3.3 pF, instead of the experimentally derived 14 pF. In this
case, it is not possible to reproduce the observed probe current fluctuation from the electric field.
Calculating the logarithmic mean of the two spectral ratios in the plot for frequencies between 500
and 700 Hz, we get 0.85 for CP = 14 pF and 0.47 for 3.3 pF. To get a spectral ratio of 1, the
capacitance should be 17 pF. Of course, there are uncertainties in this method as well as in the
method used by Lindqvist et al., but the fact that the results agree to within 20 % indicates that
the estimated capacitance is approximately correct.

3.5 Application: Viking observations of electrostatic ion cyclotron waves

Electrostatic (hydrogen) ion cyclotron waves are often observed on Viking (André et al., 1987;
Boström et al., 1987), and sometimes also ion cyclotron harmonic waves (Koskinen et al., 1987).
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Figure 8 shows an interval of Viking data in a region where the proton cyclotron frequency fcp = 40
Hz. In the top panel, which shows the voltage between probes 3 and 4, an oscillation around fcp
is seen from about 50 to 250 ms in the plot, and another emission near 2 fcp is visible between 270
and 320 ms. Similar emissions are also seen in the probe current to probe 1, which is shown as the
solid curve in the center plot.

The lower right plot in Figure 8 shows a probe sweep recorded close to the wave emissions.
From a least squares fit to the linear part of the probe curve (shown as a dashed line), the sheath
resistance for the density probes is found to be 310 MΩ. The plasma has very low density (∼ 1
cm−3), and the satellite potential is therefore so high that the photoelectron saturation current is
never reached in the sweep. For the calculation of the sheath resistance for the voltage probes, we
therefore use values Iph,0 ≈ 600 nA and Tph ≈ 2 eV obtained from a sweep earlier on the same
orbit. Due to the low density, the photoelectron current will dominate the current at the point of
operation of the voltage probes, and we can calculate the resistance to be a few MΩ. Assuming CP

to be on the order of 10 pF (the vacuum value C0 is 6 pF), the characteristic frequency fC is above
1 kHz. The voltage probes are therefore purely resistively coupled to the plasma in this case. For
the density probes, CP = 10 pF yields fC ≈ 50 Hz, so for these, the capacitive term in (16) must
be included.

In this case, the magnetic field was only 11 degrees out of the spin plane, so the method we
used in Section 3.4 above to calculate the voltage variation on one probe from a measured signal on
another probe pair should be useful. The boom angles with respect to the magnetic field was 74◦

for probe 1, which was in density mode, and 159 degrees for the probe pair 3 and 4 in voltage mode.
Calculating the voltage variations and applying (16), we get an expected probe current fluctuation
which is shown as a dashed curve in the center panel. The correspondence between the two curves
in this panel is remarkably good. We have here used the resistance from the sweep, R = 310 MΩ,
and the vacuum capacitance CP = 6 pF. The lower left plot shows the spectra of the measured
(solid) and calculated (dashed) probe current fluctuations. The dotted curve shows the ratio of the
displacement current to the conduction current.

It is interesting to note that the vacuum capacitance of the sphere to infinity is a good approx-
imation, as this contrasts to the results from Freja discussed above. Studying spectral ratios as in
Section 3.4, we find that using the vacuum capacitance and R = 310 MΩ from the nearby sweep,
the average spectral ratio between 30 and 150 Hz is around 1.1, which we consider to be a very
good value. Increasing CP to twice the vacuum value, the average spectral ratio increases to 1.8.
Hence, the capacitance cannot be much above its vaccum value. Lindqvist et al. (1994) attributed
the high CP value they found on Freja to the photoelectron sheath. The finding that the vacuum
capacitance is a good approximation for the Viking probes cannot be explained within this hypoth-
esis, as the probes were sunlit in both the Freja and Viking cases. The Viking example discussed
above was from a region of very low plasma density, so one would rather expect the influence of
photoelectrons to be more pronounced in this case. The most striking difference between the Viking
and Freja observations instead are that the density is much higher in the Freja case, suggesting
that the high CP value found on Freja has to do with the properties of the natural plasma rather
than the photoelectron cloud. An extensive investigation of the different behaviour of the probe
capacitance to the plasma on Viking and Freja would clearly be of interest, as well as an extended
comparison of results of capacitance estimates by the methods presented above and by Lindqvist
et al. (1994)
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Figure 9: Circuit description of a probe-spacecraft-plasma system.

4 Cross talk and variations in satellite potential

4.1 Circuit description

The currents which flow to the plasma from the probe have to close through the spacecraft body,
which itself may be seen as a probe, obeying some current-voltage relationship IS(VS), where IS
is the current from spacecraft body to the plasma and VS is the satellite potential with respect to
the plasma. The probe, spacecraft, and plasma form an electric circuit, for which

VS + UP − VP − ΦP = 0, (21)

where UP is the voltage between probe and spacecraft body, VP is the potential of the probe relative
to the local plasma, and ΦP is the potential difference between the location of the probe and the
spacecraft due to electric fields in the plasma. Assuming that no other instruments complicate the
situation, the satellite potential VS will be determined by the current continuity equation

IS(VS) +

N∑
P=1

IP (VP ) = 0 (22)

where N is the total number of probes.

An example of a spacecraft-probe-plasma circuit is shown in Figure 9, depicting a case where
two probes (labelled 3 and 4) are in voltage mode (electric field measurements) and one probe is in
density mode (probe 1). The sheaths around probes and spacecraft are depicted by shaded ovals in
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the circuit. Probes in voltage mode are fed with a bias current IB. The current from these probes
to the plasma is given by

IP (VP ) = IB − CE
dUP

dt
, (23)

where CE is the input capacitance of the electronics, which according to Section 3.3 is the only
instrumental parameter we have to include. Probes in density mode are put at a bias potential, so
for these probes

UP = VB. (24)

In a probe instrument, the measured quantities are UP for voltage probes and IP for density
probes. The equations above form a system of first order ordinary differential equations for how
these quantities depend on the space plasma and the electric fields in it. Variations of the plasma
parameters enter the system through the dependence of IP and IS on these parameters, while the
electric field in the plasma is explicitly included through ΦP . As the equations are coupled, it
follows that a perturbation at one probe can give effects for currents to and potentials of the other
probes or the spacecraft body. This is what is known as “cross talk”. The most important of these
effects are the results of varying satellite potential.

If the functions IP (VP ) and IS(VS) are known, the relations above completely describe the
probe-spacecraft-plasma circuit. For the probe current, we get direct information from the probe
sweeps (Figure 1). To describe IS , we assume that the spacecraft body can be seen as a spherical
probe of radius rS = D rP . We also assume that the currents of collected as well as photoemitted
particles scales with area, so that the DC current-voltage relation scales as D2. For the capacitance,
we assume scaling by radius. With these assumptions, (15) translates to

IS(VS) = D2 nF (VS , T, ...) +D2 Iph(VS , ...) +DCP
dVS

dt
. (25)

This scaling should be approximately appropriate in the limit of infinite Debye length. This ap-
proximation is not always applicable to the satellite sheath. With D ∼ 15, we find from Table 1
that rS/λD ≪ 1 can be expected to hold only in tenuous plasmas encountered by Viking. For other
cases, in particular on Freja, finite λD effects can be expected to be important. Such non-OML
effects (Section 2.2) increase both the resistance and the capacitance. Therefore, they are expected
to affect the first and last terms of (25) in opposite ways. A deeper analysis of this problem cannot
be accomodated in the present work, but we note that in the cases where one of the terms in (25)
is dominating, it is likely to do so even if effects of finite rS/λD are included. In such cases, the
scaling indicated by (25) may retain an approximate validity with values of D deviating from what
is expected from simple geometrical considerations.

Eliminating UP by using (21), the equations (22) - (24) for a total number of N probes is a
system of N +1 equations for N +1 unknowns (VS and VP ). The functions IP (VP ) and IS(VS) are
assumed to be known from (15) and (25). Input to these equations are the potential differences in
the plasma ΦP and the relative density fluctuations δnP /n0 at the locations of the probes and the
spacecraft (P = S). The output should be formulated in terms of the quantities really measured
on a spacecraft, which usually are the voltages between two probes P and Q,

UPQ = ΦP − ΦQ + VP − VQ, (26)

or the relative probe current fluctuation, which is

δIP
IP0

=
IP (VP0 + δVP )− IP (VP0)

IP0
(27)
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Figure 10: Example of Viking observations of solitary waves.

where IP from (15) is used. The bias voltage on a density probe is usually sufficiently high to allow
the neglect of the nonlinear photoelectron and ion terms in Ie. Equation (27) then reduces to

δIP
IP0

=
δnP

n0
− 1

VP0

[
ΦP +

RCP

1 + δnP /n0

d

dt
(ΦP + VS)

]
. (28)

In the ideal case, we should have UPQ = ΦP −ΦQ and δIP /IP0 = δnP /n0. However, equations (26)
and (28) show that other terms also affect the measurements. The fluctuations in current depend
on the potential differences in the plasma and on the variation of the satellite potential, and thus
on δnS/n0, as well as on δn1/n0. Likewise, the voltage measurement is influenced by the difference
between the potentials of the probes, which reflects differences in the probe sheaths. Thus, different
plasma densities at the probes may affect the voltage estimate, as has been discussed by e. g. Laakso
et al. [1994]. To find the detailed dependence of the measured quantities on the fields δn/n0 and
Φ, we have to solve the system of equations (22) - (24), and then use (26) and (28).

4.2 Application: Viking observations of solitary waves

Solitary waves (SWs) in the auroral regions at altitudes between 5,000 to 13,000 km have been
observed by the S3-3 (Temerin et al., 1982) and Viking (Boström et al., 1988) satellites. For the
most recent observational results on these phenomena, the reader is refered to the work by Mälkki
et al. (1993), Mälkki (1993), Eriksson et al. (1995) and references therein. The SWs show very
high amplitude (δIP /IP0 ≲ 50 %). To evaluate the accuracy of the measurements, it is necessary
to do a detailed study of the response of the probe-spacecraft-plasma system to these structures.
The examples we will show here are also included in the paper by Eriksson et al. [1995], which also
contains some idealized cases.

An example of Viking SW observations is shown in Figure 10. To simulate the measurements,
we assume a plasma with uniform background electron number density n0 and no background
electric field. An electrostatic solitary wave is a localized density depletion with negative potential
travelling antiparallel (in the northern hemisphere) to the ambient magnetic field. We let the z
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Figure 11: Viking (orbit 877) Langmuir probe sweep inside a SW region, obtained just before the
data in Figure 10 (MLT 3.0, MLAT 81.1◦, altitude 8965 km). The sweep is parametrized as in
Figure 1 with αn = 0.5 cm−3, T ∗ = 0.2 eV, Iph,0 = 530 nA, Tph = 1.8 eV, βn = 0, and VS = 9.5 V.

axis be antiparallel to B . The SW propagates along this axis with speed u, and is assumed to have
infinite extent in the perpendicular directions. A symmetric SW could be described by for instance
a Gaussian, a hyperbolic secant function, or any other localized function of reasonable appearance.
Some of the observed SWs also show a net potential drop over the structure, and are then known
as weak double layers (WDLs). To represent these, we may add an inverse tangent, a hyperbolic
tangent or some other step-like function to the SW. We model the SW density perturbation by

δn(z, t)

n0
= −ν0 exp

(
−
[
z − ut

L

]2)
, (29)

and the potential by

Φ(z, t) = −Φ0 exp

(
−
[
z − ut

L

]2)
− ∆Φ

2
tanh

(
z − ut

L′

)
. (30)

Here ν0 and Φ0 are known as the amplitudes of the SWs in relative density fluctuation and voltage,
and ∆Φ is the net potential drop. The scale length L of the potential well may be estimated from
measurements, while the choice of scale length L′ over which the net potential drop is distributed
is more uncertain.

Choosing coordinates so that the satellite is at z = 0, the voltage difference (due to electric
fields in the plasma) between the locations of the spacecraft body and any probe P = 1, 2, 3, or 4
is ΦP (t) = Φ(zP , t)− Φ(0, t), where zP is the location of the probe. The relative density depletion
at a probe (P = 1, 2, 3, 4) or at the satellite (P = S) is δnP (t)/n0 = δn(zP , t)/n.

The relevant parameters describing the probe characteristic are found by fitting the expressions
in Section 2.3 to a nearby probe sweep (Figure 11). Since the probe does not reach photoelectron
saturation in this case, the value for Iph is taken from the sweep in Figure 1. We do not expect
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the photoelectron properties to change in the 20 minutes which separate these two sweeps. It is
therefore surprising to find a different value of Tph. This is probably an artefact due to changing
satellite potential during the sweep. In this case the plasma is very tenuous, as is witnessed by the
low probe current of 40 nA at 16 V bias potential. To close the bias current of two times −150
nA to probes 3 and 4, the satellite must be at positive potential. When the bias voltage on the
density probe is lowered from its normal 16 V during the sweep, the associated probe current also
decreases, and the satellite potential has to increase to close the current. This change of VS causes
an apparent increase in Tph when we try to do a fit which assumes constant satellite potential. We
therefore use Tph and Iph,0 from the sweep in Figure 1 in the following. It should be noted that the
probe curve in Figure 11 is not perfectly linear in this case. This is due to an effect of collection
of photoelectrons emitted by the boom and the spacecraft, which is seen in very tenuous plasmas
when the boom is close to parallel to the ambient magnetic field (Hilgers et al., 1992). Due to the
satellite spin, this happens to be the case in the right part of the probe curve in Figure 11. The
increased probe current above approximately 10 V is therefore interpreted as due to collection of
boom emitted photoelectrons.

For simulation of the measurements, we will study a configuration of Viking with two probes
(1 and 2) in density mode and the other probes 3 and 4 in voltage mode. Probe 1 is then at a
fixed bias voltage VB = 16 V. From the probe sweep in Figure 11, the probe current at this bias
voltage is dominated by Ie (collection of plasma electrons), and we may neglect the current due to
photoelectrons emitted by the probe. Probes 3 and 4 have a bias current IB = −150 nA. With
a photoelectron saturation current of −530 nA (Figure 1), they will stay at positive potentials V3

and V4 (compare equation (3)). The sweep also shows that the satellite potential VS is positive,
and as VB is +16 V in normal operations, the potential of probes 1 and 2, V1,2 = VS + VB in the
unperturbed plasma, is even higher. The photoelectron current to these probes may therefore be
completely neglected (compare to Fig. 11 and to equation (3)). The system of equations (21) - (24),
where the currents are given by (3), (6), and (25) and the parameters αn and T ∗ are empirically
obtained from some nearby probe sweep, can now be reduced to three coupled nonlinear ordinary
differential equations for V3, V4, and VS :

CE
dVS

dt
− (CE + CP )

dV3

dt
− (1 +

δn3

n0
)
V3

Re
=

= (1 +
δn3

n0
)
T ∗

Re
− Iph,0 exp(−V3/Tph) + CE

dΦ3

dt
+ IB (31)

CE
dVS

dt
− (CE + CP )

dV4

dt
− (1 +

δn4

n0
)
V4

Re
=

= (1 +
δn4

n0
)
T ∗

Re
− Iph,0 exp(−V4/Tph) + CE

dΦ4

dt
+ IB (32)

(DCP + CE)
dVS

dt
− CE

dV3

dt
− CE

dV4

dt
=

= D2 Iph,0 exp(−VS/Tph)− (D2

[
1 +

δnS

n0

]
+ 1 +

δn1

n0
)
VS

Re
−D2 T ∗

Re
(1 +

δnS

n0
) +

−T ∗ + VB − Φ1

Re
(1 +

δn1

n0
) + CP

dΦ1

dt
+ CE

dΦ3

dt
+ CE

dΦ4

dt
+ 2IB (33)

where Re = T ∗/Ie0 denotes the unperturbed probe sheath resistance in the coupling to plasma
electrons, which from (7) is

Re = T ∗/Ie0 =
1

4πa2eαn0

√
2πmeT ∗/e. (34)
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On Viking, voltage probes (3 and 4 in the circuit in Figure 9) operate at a bias current of
−150 nA. This places them on a part of the probe curve which is dominated by photoelectron
emission (compare to equation (3) and Figure 1) and has maximal steepness. Changes in V3 and
V4 will therefore be small. Also, CE ≪ DCP + CE , so the last two terms on the LHS of (33) are
negligible, and (33) is therefore almost decoupled from (31) and (32). Physically, this means that
the satellite potential is effectively independent of the variations at the V-mode probes 3 and 4. The
capacitive terms (LHS) in equation (33) will normally be small compared to the resistive terms
on the RHS. Also, the variations in satellite potential are usually small compared to the probe
potential variations, so the first terms on the LHS of (31) and (32) may often be neglected as well.
Therefore, in many cases the system above reduces to one transcendental equation for the satellite,
and one nonlinear ordinary differential equation for each of the voltage probes (3 and 4 in this case).
In the numerical calculations in this paper, we have solved the full equations shown above in order
to have a general method applicable to different phenomena in different environments. Numerical
calculations using approximations as listed have only been used for checking the results.

The signals measured onboard and transmitted to the ground are U34 = U3 − U4 and δI1/I =
(I1 − I10)/I10, where I10 is the probe current in the unperturbed plasma. After solution of the
system above, the measured quantities are given by (26) and (28) as

U34 = Φ3 − Φ4 + V3 − V4 (35)

δI1
I

=
δn1

n0
− 1

V10

[
Φ1 +

ReCP

1 + δn1
n0

d

dt
(Φ1 + VS)

]
(36)

where index 0 refers to the unperturbed plasma.

The above model for the SW measurements may be studied by approximative analytical meth-
ods or by numerical integration. As the probe current fluctuation can be up to 80 per cent,
linearizing the equations is not always appropriate. We here solve the full equations (31) - (33) by
numerical integration, using equations (29) - (30) to describe the SWs. Before sampling, the signal
is low-pass filtered with a 3 dB damping point at half the sampling frequency (Eriksson et al.,
1995). The effects of these filters have been included in the numerical calculations.

The system to be solved includes a number of parameters for the SWs: ν0, Φ0, u, L, ∆Φ and L′.
For a symmetric SW, the last two parameters disappear, and four parameters remain. Figure 12
shows the result of modelling the measurement of a SW observed by Viking at UT 082538, July 31,
1986. The instrument sampled the signals U34 and δI1/I at 428 samples/s. The observed signals are
shown as open circles in panels c and d. Good agreement between observed and modelled voltage
variation (panel c) was found for parameter values v = 20 km/s, L = 50 m, and Φ0 = 4 V. To get
good correspondence between measured and modelled probe current fluctuation (panel d), ν0 was
adjusted to 50 %. It is notable that this procedure results in a good modelling of the particular
features of δIP /IP0 not originating from the assumed Gaussian density fluctuation (dashed curve).
The origin of these spurious signals can be traced to the variation of the satellite potential, shown
in the upper right panel, when the density depletion in the SW passes the satellite. As is seen
from (28), the positive change in VS adds to Φ2, which is positive when the negative SW passes the
satellite body. This adds a negative bipolar structure to the current, proportional to the negative
derivative of VS + Φ2, due to capacitive effects. A similar bipolar structure, somewhat smaller
as VS is constant here, is added to the main minimum in the probe current. However, the main
minimum still gives a good representation of δn/n. To summarize, the measurement error for the
potential of the SW is insignificant, while the error in the density fluctuation estimate is significant,
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Figure 12: Simulation of a SW measurement.

although well understood. For further discussions of the SW measurements, the reader is refered
to the report by Eriksson et al. [1995].
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5 Sheath nonlinearities

5.1 Effects of sheath non-linearities on wave measurements

The probe curve is obviously not perfectly linear. The presence of nonlinearities implies that a
perturbation of VP , with a certain frequency results in a current response involving a spectrum of
frequencies. For a sinusoidal perturbation, the principal effects may be sorted into rectification,
which is the response at zero frequency, and the generation of harmonics. We will here concentrate
on rectification. For sounding rockets, Boehm et al. (1994) have studied the rectification effect
on electric field measurements, while Ergun et al. (1994) have considered the effect on density
measurements. We will here consider measurements of solitary wave phenomena on Viking and
Freja. In the Viking case, we investigate if the solitary wave structures discussed in Section 4.2
could possibly be signatures of wave packets, for example travelling Langmuir or lower hybrid
cavitons, rather than of actual solitary pulses. For Freja, we consider the question if the probe
current minima observed simultaneously with bursts of lower hybrid waves may be an effect of
rectification of the waves rather than of density depletions.

5.2 Application: Can the solitary waves observed on Viking be rectified wave
packets?

To answer this question, we will here study what signature a rectified wave packet would give in
the Viking data.

In a thin plasma, such as encountered by Viking in SW regions (Eriksson et al., 1995), the
dominant nonlinearity in the probe equations is the photoelectron current. For probes in density
mode, for which VP ≫ Tph, the photoelectron current is small and the nonlinear effects are weak.
In contrast, probes in voltage mode, which we concentrate on here, operate on the steep part of the
probe curve, where the nonlinear photoelectron current completely dominates the current (compare
Figure 11). For voltage probes, we may assume constant satellite potential, since the measured
quantity is the voltage difference between two probes (equation (24)), and variations in VS therefore
do not affect the results. Neglecting Ie and Ii, equations (5), (21), and (23) yields

Iph(VP ) + (CP + CE)
dVP

dt
− IB − CE

dΦP

dt
= 0. (37)

If the perturbation amplitude is sufficiently small to keep VP > 0, we get

Iph,0 exp

(
− VP

Tph

)
− (CP + CE)

dVP

dt
= IB + CE

dΦP

dt
. (38)

This equation is readily analyzed with a standard two time scales technique. The ansatz

VP = V(0) + V(1), (39)

where V(0) is the equilibrium probe potential for ΦP constantly at zero, gives

IB

[
exp

(
−
V(1)

Tph

)
− 1

]
− (CE + CP )

dV(1)

dt
= CE

dΦP

dt
. (40)

For a sinusoidal perturbation,
ΦP = Φ sinωt, (41)
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the perturbation ansatz

V(1) = Vlin + Vnl (42)

where Vnl ≪ Vlin yields the linearized equation

dVlin

dt
+ ω0Vlin = − CE

CE + CP

dΦP

dt
(43)

with solution

Vlin = − CE

CE + CP

ω

ω2
0 + ω2

(ω sinωt + ω0 cosωt) Φ, (44)

where the characteristic angular frequency is

ω0 =
IB

(CE + CP )Tph
. (45)

This gives a characteristic frequency f0 = ω0/2π ≈ 1 kHz for Tph = 1 eV. Expanding (40) to second
order in Vlin and first order in Vnl, we get

Vnl =
1

2

1

Tph
V 2
lin +

1

Tph
VlinVnl −

1

ω0

dVnl

dt
. (46)

For a small perturbation, the second term on the RHS may be neglected. To find rectification
effects, we want to find the average value of Vnl over a wave period. The last term on the RHS
does not contribute to the average, which is found to be

V av
nl =

ω

2π

∫ 2π/ω

0
Vnl dt =

1

4

(
CE

CE + CP

)2 ω2

ω2
0 + ω2

Φ2

Tph
. (47)

If a high frequency wave is modulated by a low frequency envelope, this modulation will show up
in our measured signal, where frequencies above a few hundred hertz are filtered away, as a low
frequency signal of amplitude V av

nl . It follows from (35) that this will be the real observed error
in the measured voltage signal. A wave of amplitude 25 mV/m and wavelength much longer than
the boom length of 40 m may induce a 0.1 V amplitude in potential between probe and satellite.
If the frequency is 1 kHz and Tph = 1 eV, we get V av

nl ≈ 1 mV. Higher wave amplitudes will give
higher values of V av

nl , but then the perturbation approach breaks down and (47) does not provide
quantitatively correct results.

The most important feature of the rectification effect described by equation (47) is that V av
nl

is strictly positive. This is a perturbation result, but by considering its physical origin it becomes
clear that it is valid also for high amplitude waves. Consider a sphere with a bias current of 150
nA. A fluctuation of potential in the plasma couples to the probe potential as described to zeroth
order by (44). It is clear from the probe curve shown in Figure 11 that if we compare a small
negative and a small positive perturbation of VP from its equilibrium value, the effect on the probe
current is largest for the negative perturbation because of the nonlinearity of the probe curve.
For a sinusoidal perturbation, the average of the current response during one period will then be
negative. Therefore, variations in probe potential result in a net decrease of the already negative
probe current. However, the average current must stay constant, as it is constrained by the bias
voltage. In order to keep the current constant, the average probe potential must increase. This is
exactly the opposite of the case studied by Boehm et al. (1994) who considered probes at negative
potential in the nightside ionosphere. The dominating nonlinearity in their case is the exponential

27



Figure 13: Simulation of rectification of the voltage signal for a hypothetical wave packet on Viking.

term in (6), which has a second derivative of the opposite sign compared to our case. Consequently,
they concluded that the rectification effects in their case should appear as negative voltage offsets.

Considering equation (26), it is clear that the effects of an external potential variation Φ and
a variation of the probe potential are equivalent for voltage measurements with double probes.
Therefore, the SWs observed on Viking, which all have the appearance of a local potential minimum
(compare to Figure 6 of Mälkki et al. (1993)) cannot be signatures of rectified wave packets.

Numerical solution of the probe equations (21) – (24) of the same character as in Section 4.2
may be applied to this problem as well. For the simulation, we have modified the set of equations
(31) – (33) by removing their restriction to positive probe potentials and using the full expressions
(3) and (6). Equation (30) for the perturbation was replaced by

Φ(z, t) = Φ0 exp

(
−
[
z − ut

L

]2)
cos
(
2π
[ z
λ
− ft

])
(48)

to represent a wave packet with group velocity u and phase velocity fλ along the magnetic field.
The density fluctuation was put to zero as we focus the interest on rectification. We have used
the same values of plasma parameters, boom angles, structure speed u and extent L as for the
SW in Figure 12, but Φ0 was put at 3 V, and the frequency and wavelength of the wave is f = 3
kHz and λ = 100 m, respectively. This does not necessarily represent any wave mode actually
observed on Viking, but is chosen as an example of rectification effects. The upper row in Figure
13 shows, from left to right, the measured signal U34, the potential of one of the probes V3, and the
potential difference in the plasma between the locations of probes 3 and 4, which is the input to the
simulation and what should have been observed in U34 if the measurement was ideal. Effects of the
sheath nonlinearities are clearly seen in U34 and V3. The bottom row of the figure shows low-pass
filtered versions of the signals U34, V3, and the satellite potential VS to highlight the rectification
effects. As expected, VP and VS show positive excursions, and a bipolar structure is seen in U34,
with opposite sign compared to the one which is observed in a solitary wave measurement (compare
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Figure 12).

For the current probes, rectification effects in the probe sheath will be small, as noted above.
However, the circuit also includes the nonlinear satellite sheath, which may be a more efficient
rectifier. A simulation including both probe and satellite sheaths have been performed, and resulted
in a bipolar rectified structure in the probe current, with an amplitude of 0.5 % for the parameters
used for the voltage rectification signal above. The reason for a bipolar structure to form is clear.
As was seen above, rectification causes the satellite potential to move, about 0.15 V in this example
(Figure 13). For a density probe at fixed bias, the probe voltage will vary accordingly. As the probe
is mainly capacitively coupled to the plasma, a bipolar signature results in the probe current due
to the unipolar rectified satellite potential variation seen in Figure 13. Further discussions on
rectification in the satellite sheath is found in the Freja application in Section 4.2. Here, we just
conclude that neither the voltage nor the probe current signature of the observed SWs on Viking
can be due to rectification of hypothetical wave packets. The interpretation of these phenomena as
solitary wave pulses is confirmed.

5.3 Application: Freja observations of small-scale density depletions with en-
hanced lower hybrid wave power

Figure 14 shows an example of Freja observations of so called lower hybrid cavities, LHCs (Eriksson
et al., 1994; Dovner et al., 1994). The observational signature of these is an enhanced voltage
fluctuation around and above the lower hybrid frequency (typically a few kHz), coincident with a
probe current decrease with a width of around 10 ms. The minimum in the probe current has been
interpreted as a density depletion. We will here investigate if it is possible to explain it in terms
of rectification of the observed waves instead (Ergun et al., 1994). This is a question of highest
interest, since almost all attempts to understand the physics of these structures concentrate on the
coupling of lower hybrid waves and density depletions (Robinson et al., 1995; Singh, 1994; Pécseli
et al., 1994).

5.3.1 Rectification in probe sheaths

First studying the probe sheaths, we may write the probe characteristic locally around the point
of operation of a density probe as suggested by (16). Neglecting variations of VS , equation (21)
implies that the perturbation of the probe potential will be coupled to the electric field in the
plasma by δVP ≈ −δΦP . In the case of no density perturbation, we then have

δIP
IP0

= −
(

1

RIP0
+

CP

IP0

d

dt

)
δΦP + a2 (δΦP )

2 + .... (49)

Considering a perturbation of the form

δΦP (t) = Φ0(t) sin 2πft (50)

where the amplitude Φ0(t) varies on a timescale much longer than the wave timescale,

1

Φ0

dΦ0

dt
≪ 2πf, (51)

we have

δIP (t)

IP0
= −

[
1

R
sin 2πft+ 2πfCP cos 2πft

]
Φ0(t)−

1

2
a2Φ

2
0(t) cos 4πft+

1

2
a2Φ

2
0(t). (52)
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Figure 14: LHC observed by Freja on May 2, 1994, orbit 7580. Time is relative to UT 201319.499.
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Figure 15: Left panel: Langmuir probe sweep recorded on Freja orbit 7580, May 2, 1994, at UT
201539, in the vicinity of the LHC in Figure 14. Fitting parameters using expressions in Section
2.3: αn = 1550 cm−3, T ∗ = 0.4 eV, βn = 500 cm−3, m∗ = 1 u, VS = −2.9 V. Right panel: a
blowup of the same sweep around the normal point of operation of density probes (VB = 10 V),
and a quadratic least squares fit to this part of the curve.

The term in the square brackets is a linear term at the fundamental frequency. The next term is
a nonlinear harmonic, and the last term is the nonlinear low-frequency signal, which is our chief
interest here.

A burst of oscillations of the form seen in Figure 14 may reasonably be described as a carrier
wave with f = 5 kHz with an amplitude modulation Φ0(t) with maximum value ΦM = 0.5 V. We
wish to point out that effects of finite wavelength are not important to us here. Our aim is to model
the voltage between a density probe and the satellite, not to determine the real electric field in the
plasma. Using the measured voltage fluctuations between two probes 21.2 m apart, which is the
signal shown at top of Figure 14, can, in the case of long wavelengths, make us overestimate the
potential variation between the satellite and a density probe at a 5.6 m boom, but will otherwise
not introduce any significant errors.

At left in Figure 15, a probe characteristic recorded close to the LHC observations in Figure
14 is shown. A quadratic least squares fit to points in the interval VB ∈ [ 6 V, 14 V ] in the
sweep, shown at right in Figure 15, yields parameter values R = 1.2 MΩ, a2 = 5.4 · 10−3 V−2,
and I0 = 5.3 µA. Using CP = 14 pF (Section 3.4), we find that the maximum amplitude of the
fundamental oscillation in (52) is around 8 %, while the nonlinear terms have amplitudes below
0.1 %. The wave fluctuations at frequencies f and 2f are filtered away by a low-pass filter with 3
dB damping point at 1.3 kHz, and cannot be seen in the data. Only the rectified signal 1

2a2Φ
2
0(t)
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remains, with a maximum magnitude around 0.1 %, which obviously is far below what is needed
to cause the observed probe current fluctuation. Moreover, it has the sign of an increase, not a
decrease, of the probe current.

To explain the 3 % decrease in the probe current seen in Figure 14 in terms of rectification
effects with the observed electric field, we would have to increase the value of a2 by a factor of
fifty. As a2 is proportional to the second derivative of the probe characteristic (equation (13)), this
would yield an unrealistic probe curve. The origin of the positive sign of a2 is quite unclear, as
it is not readily interpreted in terms of simple theory (equations (3), (6), and (10)). Most likely,
it is an artefact of the plasma conditions changing during the time of the sweep. Values of a2
of the same order are commonly found in other probe sweeps, also with opposite sign. Any real,
consistently occuring nonlinearities in the probe characteristic must be smaller than the observed
a2 value, unless changing plasma conditions and spin modulation effects always act to balance the
nonlinearity, which is most unlikely. We may note that the value of a2 from the photoelectron
current (3), which is the only nonlinear current term in this case, is |a2| ≲ 10−5 V−2.

5.3.2 Variations in satellite potential

Above, we showed that rectification in probe sheaths is not sufficient to cause observed probe
current fluctuations. However, the probe current closes through the satellite and its sheath, which
is another nonlinear element in the circuit. An electric field in the plasma causing a potential
difference δΦP between satellite and probe will cause variations of the satellite potential VS as well
as of the probe potential VP . From simple area considerations (equation (25), δVS may be thought
to be much smaller than δVP , and it is thus tempting to rule out rectification in the satellite sheath.
For the Viking observations of electric field signatures in tenuous plasma studied above (Section
4.2), the satellite potential was higher than the (voltage) probe potential, and the nonlinearities
in the satellite sheath therefore weaker than the probe sheath nonlinearities. Also, the impedance
in the coupling to the plasma was much lower for the satellite than for the probe. Finally, for the
voltage probes studied in Section 4.2, variations in satellite potential are of limited interest, since
VS cancels in the measurement of voltage between two probes (equation (24)).

In contrast, for density probe measurements, variations of VS are important, as can be seen
from (28). For the dense plasma encountered by Freja, we normally have VS ≲ 0 in sunlight, as
witnessed by probe sweeps and measurements of the floating ground potential (Lindqvist et al.,
1994). This has two important consequences. First, the probe curve is much more nonlinear
near the satellite potential than near the potential of a density probe. Second, the satellite is on
the high resistance ion and photoelectron dominated part of the probe curve, while the density
probe is at the low resistance electron collection part. Taking the Freja sweep in Figure 15 as an
example, the probe sheath resistances of these two branches are RPi = (dI/dV )−1

V <0 ≈ 190 MΩ and

RPe = (dI/dV )−1
V >0 ≈ 1.2 MΩ. Assuming scaling by surface area, the satellite sheath resistance

will be lower by a factor D2, introduced in (25). D is the typical ratio of linear dimensions of the
satellite and the probe. Freja has an approximate cylindrical shape, with radius 1 m and height 0.5
m, while the probes have radius 3 cm, so D could be expected to be around 15 – 20. We have used
D = 15 in the calculations. In this case, we therefore have that the satellite sheath resistance RSi

is ∼ 1 MΩ, which is about the same as for the probe sheath. Low frequency fields could therefore
be distributed about equally over the probe and satellite sheaths. However, one should note that
when the satellite is near VS = 0 where the probe curve is nonlinear, and rectification effects
are important, the resistance decreases from the RSi value. Therefore, large fluctuations of VS

will anticorrelate with large rectification effects if the resistive coupling dominates. For the 5 kHz
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waves in Figure 14, this is the case for the probe, as 1/2πRPeCP ∼ 10 kHz if we use CP = 14 pF
as in Section 3.4. For the satellite, capacitive coupling, which will decrease the sheath impedance
below the resistive value, will be important on the high resistance linear part of the probe curve,
while resistive effects will dominate in the region where we have probe current nonlinearities, again
giving the situation of large amplitudes in δVS being anticorrelated to nonlinearities to rectify
the fluctuations. Nevertheless, we cannot rule out the possibility that there may be sufficient
fluctuations of VS to cause significant rectification effects without further considerations.

5.3.3 Rectification in spacecraft sheath

From equations (3), (6), and (10) describing the different currents, it is clear that nonlinearities are
most pronounced around VS = 0. If floating without any bias currents or bias voltages to probes
or other instruments, a satellite in darkness will normally aquire a slightly negative potential in
order to balance electron and ion currents. In sunlight, photoelectrons add to the currents, and VS

can increase to near zero or positive values if the plasma is sufficiently thin. On the other hand,
currents drawn by probes can, to some extent, balance this effect. For a satellite a few volts below
zero, the most important nonlinearity in the spacecraft sheath should be the exponential in the
electron current (6). Boehm et al. (1994) studied the effect of this nonlinearity on probe sheaths.
For a probe floating at a potential ∼ −4T , which is applicable in case of negligible photoemission,
they found the expression

∆V = −T ln [I0(δV/T )] , (53)

where I0 is the zeroth order modified Bessel function, for the rectified low frequency potential ∆V
induced by a high frequency variation δV sin 2πft. This should be applicable to the satellite sheath
as long as the perturbation is not large enough to make VS0 + δVS positive. In the opposite case
of a very large fluctuation, we may instead approximate the satellite or probe characteristic by a
piecewise linear function,

I(V ) =


V/Re, V ≥ 0

V/Ri ≈ 0, V < 0 ,
(54)

where V is the satellite potential plus some constant which may be found from the probe sweep as
the point where the extrapolations of the linear parts (large negative and large positive potentials)
cross. For δV > |V0|, averaging over a period f−1 of the fluctuation yields

∆I ≈ 1

π

√
δV 2 − V 2

0

Re
(55)

for δV < |V0| and zero otherwise. This increase in current must be balanced by a change of V0 by
an amount ∆V , given by the balance condition

∆V

Ri
= − 1

π

√
δV 2 − (V0 +∆V )2

Re
. (56)

As Re ≪ Ri, we get

∆V ≈ δV − V0. (57)

Hence, we may in the worst case have a rectified signal equal to the perturbation amplitude. This is
of course an extreme case, not likely to be found in practice, but it shows the power of rectification
effects in nonlinear sheaths.
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In the example in Figure 14, we had voltage variations of 0.5 V. Assuming the extreme case
of having all the wave voltage distributed over the satellite sheath, we could possibly get rectified
low frequency signatures of the same amplitude. From (28), this could give a rectified signature
∆I/I ∼ 5 %. As ∆VS is negative, the resulting signature in the probe current is a current minimum,
which would be consistent with the observations if we underestimate the electric field by a factor
of about 4. It is thus clear that it is not possible to rule out rectification effects on the basis of
these semi-qualitative upper-limit considerations.

We therefore do a numerical simulation of the response of the probe-satellite-plasma system to
a perturbation of the form (50) with Φ0 a Gaussian. As the probe current is at the focus of our
interest, we model the measurement system by a spherical probe in density (fixed bias voltage) mode
and a presumably spherical satellite body. For this application, we do not neglect the photoelectron
and ion currents to the density probe, as they, even though normally very small, are the sources
of nonlinearity in the probe sheath. After elimination of VP by (21) and (24), equations (15) and
(25) in (22) yield

CP
dΦP

dt
− (CS + CP )

dVS

dt
= D2Ie(VS) +D2Ii(VS) +D2Iph(VS)+

+ Ie(VS + VB − ΦP ) + Ii(VS + VB − ΦP ) + Iph(VS + VB − ΦP ) + IA (58)

where IA is the current to the plasma from the satellite due to other sources, for example other
probes and the cold plasma analyzer F3C (Whalen et al., 1994), and the other currents are modelled
by (3), (6), and (10). We have used IA as a free parameter for moving the satellite potential, which
is self-consistently determined in the numerical solution, around in order to maximize rectification
effects. For the calculation of the probe current fluctuation, the full expression (27) was used.

Results of a numerical run with parameters from the sweep in Figure 15 and an amplitude of
0.5 V, corresponding to that seen in Figure 14, are shown in Figure 16. In order to maximize
rectification effect, we have used a scaling factor D as low as 10. Also, we have put CS = DC0,
where C0 = 3.3 pF is the vacuum capacitance of a spherical probe, while keeping the experimentally
determined value CP = 14 pF in order to further increase the variations in satellite potential
(calculations using CS = DCP have also been made, showing less rectification). By using the
parameter IA, the satellite potential was adjusted until maximum rectification effects were found.
As is seen in the figure, these are still quite weak. The low frequency variation in VS was only
about 7 mV, causing a current depletion of some 0.07 %, as expected from (28). Doubling the
perturbation amplitude yields a rectified current decrease of 0.3 %, and an amplitude of 2.5 V
yields about 1.5 % in rectified probe current decrease. However, such large potentials are clearly
incompatible with Figure 14. The voltage could be underestimated by effects of capacitance division
(Section 3.3), but even if the capacitance of the voltage probes was as low as C0, this could only
make us underestimate the voltage by less than a factor of two, since the input capacitance of
probes 1 and 2, which were used for the voltage measurement in Figure 14, is 2.5 pF. We have also
done calculations for T ∗ values of 0.1 eV and 2 eV, with corresponding changes in αn to keep a
reasonable fit to the measured sweeps, without significantly changing the results.

Therefore, we conclude that the observed nonlinearities are too weak to explain the observed
probe current fluctuations as effects of wave rectification, even though we have taken care to
maximize the rectification. However, it is possible that there may exist nonlinearities not included
in the model above. As mentioned in Section 3.2, numerical simulations by Calder (1984) and Calder
and Laframboise (1985) have shown that for an electron collecting sphere, the capacitance decreases
near the plasma resonance. It does not seem unreasonable to suspect that a similar effect may be
found for an ion collecting probe or satellite near the ion plasma and lower hybrid frequencies.
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Figure 16: Simulation of Freja measurement of a lower hybrid wave packet without associated
density depletion. Top panel: Model of observed voltage variation δΦP . Center panels: Variations
in VS , VP , and δIP /IP0 caused by the voltage in the top panel. Lower panels: Filtered versions of
the signals in the center row to show rectification effects.
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Also, the capacitance could change with changing sheath characteristics, and as these depend on
the probe or satellite voltage, the problem becomes nonlinear. A study of such phenomena is far
outside the scope of this paper, but we acknowledge their possible existence as a potential source
of unknown rectification effects.

5.3.4 Observational evidence

The problem of establishing the importance of rectification effects in the LHC observations is
to some extent accessible experimentally. From equation (52), we expect the rectified signal to
closely follow the shape of the wave envelope. As is seen in Figure 14 and in numerous other LHC
observations as well, this is rarely the case. This cannot be explained as a filter effect, since the
filtering of the probe current signal at 1.3 kHz does not prohibit the reproduction of some details
of the wave envelopes.

The use of multiple density probes also gives a possibility to identify rectification effects. If the
observed probe current minima are due to density depletions at rest with respect to the plasma, the
time difference ∆t between their detection by two density probes will be related to the spacecraft
velocity vsat and the probe separation vector d by ∆t = d · vsat/v

2
sat (this is the time domain

equivalent to the phase-frequency relation in the cross spectrum discussed in Section 3.4). However,
if the current minimum is the result of rectification of the electric field, the corresponding result
will depend on the characteristics of the modulation. If the width of the envelope of the wave field
is small compared to the boom length, the voltage difference between probe and spacecraft will be
maximum when the packet passes any of them. In case the rectification effect is most pronounced
in the probe sheaths, this will give rectified signatures in the probe current when the structure
passes the probes, which is the same result as the density fluctuation gives. If rectification in the
satellite sheath is most important, the minimum in the probe current will be seen simultaneously
in both probe current signals, when the structure passes the satellite. However, in our case, the
spatial dimension of the modulation is comparable to the boom separation, and in this case the
voltage between the probe and the spacecraft will have its maximum when the maximum of the
envelope is halfway between them. Hence, the effective separation vector is d/2 rather than d, and
the time delay ∆t will be half the value it would be in the case of a density fluctuation causing
the current decrease. Thus, it is in principle possible to distinguish between the two origins of the
probe current minimum from a study of their characteristics. A preliminary analysis of this type
(Dovner et al., 1994) favours an interpretation in terms of density fluctuations. The evidence is not
complete, as there is a certain spread in the data, which may be due to motion of the plasma or
motion of the cavities with respect to the plasma. A further study, including plasma drift estimates
using the DC electric field (F1) instrument on Freja, is needed for clarification.

We also note that we have LHCs observations at boom angles for the density probes with
respect to the magnetic field at least within 15 degrees. We have not yet found any example at
perfect alignment of boom and magnetic field, but this is probably due to the limited amount of
data analysed from situations where the magnetic field is perpendicular to the satellite spin axis.
If rectification was responsible, one should expect to find LHCs mostly at boom angles near 90◦,
assuming the wave electric field to be predominantly perpendicular. A systematic search for LHC
observations made when the booms of the density probes are nearly parallel to the magnetic field
is therefore of interest.

If rectification effects cannot explain the observed current minima, this does not automatically
imply that they must be due to density depletions. There is also the possibility of temperature
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fluctuations, mentioned in Section 3.1. A local increase of the electron temperature by about twice
the δIP /IP0 value is also a possible explanation. In theory, it should be possible to use probes at
different bias voltages to distinguish between density and temperature fluctuations, since equation
(14) predicts a dependence on probe potential in the coupling of temperature fluctuations to the
probe current. In practice, we have not succeeded in arriving at any conclusion using this method,
due to the large spread of the data.
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6 Conclusions

The general results found in this report can be summarized as follows:

1. The OML approximation together with measured probe sweeps is sufficient for the under-
standing of AC measurements when rP /λD > 1, without any appeal to more detailed probe
theory.

2. The probe capacitance can be estimated from a comparison of observed fluctuations in voltage
and probe current. The result is consistent with estimates by other methods.

3. On Viking (∼ 10, 000 km), the probe capacitance to the plasma is well approximated by the
vacuum value. On Freja (∼ 1, 700 km), the observed capacitance is much larger than the
vacuum capacitance.

4. The satellite sheath is sometimes as important as the probe sheaths in causing spurious
signals.

5. The nonlinearity in measured probe sweeps can be used to calculate rectification effects on
measured signals, assuming that the displacement current is linear (described by a constant
capacitance).

6. The simultaneous use of voltage and density probes is essential for the validation of either
type of measurement.

We applied our discussion to some wave phenomena observed by the Viking and Freja satellites.
For these specific phenomena we conclude that:

7. Probe current fluctuations with the same frequency as electric wave fields above the proton
cyclotron frequency (Viking) and above the lower hybrid frequency (Freja) can be explained
by capacitive and resistive coupling to the electric field.

8. The solitary pulses in voltage and density which are observed by Viking really are solitary
waves. They cannot be due to travelling wave packets rectified in the probe sheath. Rather,
they are solitary wave pulses of negative potential and decreased density.

9. Observed nonlinearities are too weak to cause the probe current minima observed by the
Freja satellite in conjunction with lower hybrid wave bursts. The likely explanation for these
minima is that they reflect real features in the plasma, presumably density depletions.

While the investigations above show that we have a good understanding of many aspects of
probe behaviour, they also point at certain problem areas. Extended experimental investigations
of probe and satellite capacitance are needed to understand the dependence of this quantity on
plasma density, magnetic field strength, and photoelectron emission. Such investigations are pos-
sible by comparing fluctuations in the signals from voltage and current probes. In this context,
it is particularly important to explore the possibility of nonlinearities in the displacement current,
in order to fully understand rectification effects in wave measurements. Extended theoretical and
numerical work is essential in this context, as this question may be hard to address experimentally.

We have seen in this report that spurious effects often contaminate measurements by electro-
static probes. However, we have also shown that it is possible to identify these errors in the data.
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Essential in this is the availability of experimentally established probe sweeps, and the use of several
probes, some in voltage mode and some in density mode. The signals from two or more probes
in density mode can be compared, for example by cross spectral techniques, to identify effects of
electric fields, and the comparison of voltage and probe current signals can be used to identify
errors in any of them.
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Holback, B., S.-E. Jansson, L. Åhlén, G. Lundgren, L. Lyngdahl, S. Powell, and A. Meyer, The
Freja wave and plasma density experiment, Space Sci. Rev., 70, 577–592, 1994.

Holmgren, G., and P. M. Kintner, Experimental evidence of widespread regions of small-scale
plasma irregularities in the magnetosphere, J. Geophys. Res., 95, 6015, 1990.

Hultqvist, B., The Swedish satellite project Viking, J. Geophys. Res., 95, 5749–5752, 1990.

Koskinen, H., P. M. Kintner, G. Holmgren, B. Holback, G. Gustafsson, M. André, and R. Lundin,
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